If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-7x-3234=0
a = 2; b = -7; c = -3234;
Δ = b2-4ac
Δ = -72-4·2·(-3234)
Δ = 25921
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25921}=161$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-161}{2*2}=\frac{-154}{4} =-38+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+161}{2*2}=\frac{168}{4} =42 $
| (-2,3);m=-5 | | (2x-3)(x=1 | | 15x-55-7x=1 | | 4=-4n+4+3n | | -4n+5+2n=-3 | | 8x+3(+5)-5=(x-4) | | (x)+4/16=5/8 | | 63=(6x-3) | | 7+(n/4)=-2 | | 555*32=55x | | 7=-1n+0n+4 | | 7+(n/4)=2 | | -6t-5=-53 | | -3p+19=10 | | −3p+19=10 | | -2=-3n+2n-2 | | 4(3x-12)=8x+6 | | -9m+(-10m)=-95 | | b/6-38=-40 | | 31=4n+3n+3 | | 9x+98=180 | | b/6−38=−40 | | 1200=4a.A= | | -3(r-95)=78 | | -4n+3n+1=-3 | | 1x+3=5x+0 | | z/2+24=31 | | -3(r−95)=78 | | 72=7p-12 | | z/2+24=3 | | 4x=2(5x-12) | | 36=b6 |